3.1108 \(\int \frac{1}{x^{10} \sqrt [4]{a+b x^4}} \, dx\)

Optimal. Leaf size=129 \[ -\frac{4 b^2}{15 a^2 x \sqrt [4]{a+b x^4}}+\frac{4 b^{5/2} x \sqrt [4]{\frac{a}{b x^4}+1} E\left (\left .\frac{1}{2} \cot ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a}}\right )\right |2\right )}{15 a^{5/2} \sqrt [4]{a+b x^4}}+\frac{2 b \left (a+b x^4\right )^{3/4}}{15 a^2 x^5}-\frac{\left (a+b x^4\right )^{3/4}}{9 a x^9} \]

[Out]

(-4*b^2)/(15*a^2*x*(a + b*x^4)^(1/4)) - (a + b*x^4)^(3/4)/(9*a*x^9) + (2*b*(a + b*x^4)^(3/4))/(15*a^2*x^5) + (
4*b^(5/2)*(1 + a/(b*x^4))^(1/4)*x*EllipticE[ArcCot[(Sqrt[b]*x^2)/Sqrt[a]]/2, 2])/(15*a^(5/2)*(a + b*x^4)^(1/4)
)

________________________________________________________________________________________

Rubi [A]  time = 0.0592237, antiderivative size = 129, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.4, Rules used = {325, 312, 281, 335, 275, 196} \[ -\frac{4 b^2}{15 a^2 x \sqrt [4]{a+b x^4}}+\frac{4 b^{5/2} x \sqrt [4]{\frac{a}{b x^4}+1} E\left (\left .\frac{1}{2} \cot ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a}}\right )\right |2\right )}{15 a^{5/2} \sqrt [4]{a+b x^4}}+\frac{2 b \left (a+b x^4\right )^{3/4}}{15 a^2 x^5}-\frac{\left (a+b x^4\right )^{3/4}}{9 a x^9} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^10*(a + b*x^4)^(1/4)),x]

[Out]

(-4*b^2)/(15*a^2*x*(a + b*x^4)^(1/4)) - (a + b*x^4)^(3/4)/(9*a*x^9) + (2*b*(a + b*x^4)^(3/4))/(15*a^2*x^5) + (
4*b^(5/2)*(1 + a/(b*x^4))^(1/4)*x*EllipticE[ArcCot[(Sqrt[b]*x^2)/Sqrt[a]]/2, 2])/(15*a^(5/2)*(a + b*x^4)^(1/4)
)

Rule 325

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a*
c*(m + 1)), x] - Dist[(b*(m + n*(p + 1) + 1))/(a*c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 312

Int[1/((x_)^2*((a_) + (b_.)*(x_)^4)^(1/4)), x_Symbol] :> -Simp[(x*(a + b*x^4)^(1/4))^(-1), x] - Dist[b, Int[x^
2/(a + b*x^4)^(5/4), x], x] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 281

Int[(x_)^2/((a_) + (b_.)*(x_)^4)^(5/4), x_Symbol] :> Dist[(x*(1 + a/(b*x^4))^(1/4))/(b*(a + b*x^4)^(1/4)), Int
[1/(x^3*(1 + a/(b*x^4))^(5/4)), x], x] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 335

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Subst[Int[(a + b/x^n)^p/x^(m + 2), x], x, 1/x] /;
FreeQ[{a, b, p}, x] && ILtQ[n, 0] && IntegerQ[m]

Rule 275

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m + 1, n]}, Dist[1/k, Subst[Int[x^((m
 + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]

Rule 196

Int[((a_) + (b_.)*(x_)^2)^(-5/4), x_Symbol] :> Simp[(2*EllipticE[(1*ArcTan[Rt[b/a, 2]*x])/2, 2])/(a^(5/4)*Rt[b
/a, 2]), x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b/a]

Rubi steps

\begin{align*} \int \frac{1}{x^{10} \sqrt [4]{a+b x^4}} \, dx &=-\frac{\left (a+b x^4\right )^{3/4}}{9 a x^9}-\frac{(2 b) \int \frac{1}{x^6 \sqrt [4]{a+b x^4}} \, dx}{3 a}\\ &=-\frac{\left (a+b x^4\right )^{3/4}}{9 a x^9}+\frac{2 b \left (a+b x^4\right )^{3/4}}{15 a^2 x^5}+\frac{\left (4 b^2\right ) \int \frac{1}{x^2 \sqrt [4]{a+b x^4}} \, dx}{15 a^2}\\ &=-\frac{4 b^2}{15 a^2 x \sqrt [4]{a+b x^4}}-\frac{\left (a+b x^4\right )^{3/4}}{9 a x^9}+\frac{2 b \left (a+b x^4\right )^{3/4}}{15 a^2 x^5}-\frac{\left (4 b^3\right ) \int \frac{x^2}{\left (a+b x^4\right )^{5/4}} \, dx}{15 a^2}\\ &=-\frac{4 b^2}{15 a^2 x \sqrt [4]{a+b x^4}}-\frac{\left (a+b x^4\right )^{3/4}}{9 a x^9}+\frac{2 b \left (a+b x^4\right )^{3/4}}{15 a^2 x^5}-\frac{\left (4 b^2 \sqrt [4]{1+\frac{a}{b x^4}} x\right ) \int \frac{1}{\left (1+\frac{a}{b x^4}\right )^{5/4} x^3} \, dx}{15 a^2 \sqrt [4]{a+b x^4}}\\ &=-\frac{4 b^2}{15 a^2 x \sqrt [4]{a+b x^4}}-\frac{\left (a+b x^4\right )^{3/4}}{9 a x^9}+\frac{2 b \left (a+b x^4\right )^{3/4}}{15 a^2 x^5}+\frac{\left (4 b^2 \sqrt [4]{1+\frac{a}{b x^4}} x\right ) \operatorname{Subst}\left (\int \frac{x}{\left (1+\frac{a x^4}{b}\right )^{5/4}} \, dx,x,\frac{1}{x}\right )}{15 a^2 \sqrt [4]{a+b x^4}}\\ &=-\frac{4 b^2}{15 a^2 x \sqrt [4]{a+b x^4}}-\frac{\left (a+b x^4\right )^{3/4}}{9 a x^9}+\frac{2 b \left (a+b x^4\right )^{3/4}}{15 a^2 x^5}+\frac{\left (2 b^2 \sqrt [4]{1+\frac{a}{b x^4}} x\right ) \operatorname{Subst}\left (\int \frac{1}{\left (1+\frac{a x^2}{b}\right )^{5/4}} \, dx,x,\frac{1}{x^2}\right )}{15 a^2 \sqrt [4]{a+b x^4}}\\ &=-\frac{4 b^2}{15 a^2 x \sqrt [4]{a+b x^4}}-\frac{\left (a+b x^4\right )^{3/4}}{9 a x^9}+\frac{2 b \left (a+b x^4\right )^{3/4}}{15 a^2 x^5}+\frac{4 b^{5/2} \sqrt [4]{1+\frac{a}{b x^4}} x E\left (\left .\frac{1}{2} \cot ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a}}\right )\right |2\right )}{15 a^{5/2} \sqrt [4]{a+b x^4}}\\ \end{align*}

Mathematica [C]  time = 0.0092, size = 51, normalized size = 0.4 \[ -\frac{\sqrt [4]{\frac{b x^4}{a}+1} \, _2F_1\left (-\frac{9}{4},\frac{1}{4};-\frac{5}{4};-\frac{b x^4}{a}\right )}{9 x^9 \sqrt [4]{a+b x^4}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^10*(a + b*x^4)^(1/4)),x]

[Out]

-((1 + (b*x^4)/a)^(1/4)*Hypergeometric2F1[-9/4, 1/4, -5/4, -((b*x^4)/a)])/(9*x^9*(a + b*x^4)^(1/4))

________________________________________________________________________________________

Maple [F]  time = 0.032, size = 0, normalized size = 0. \begin{align*} \int{\frac{1}{{x}^{10}}{\frac{1}{\sqrt [4]{b{x}^{4}+a}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^10/(b*x^4+a)^(1/4),x)

[Out]

int(1/x^10/(b*x^4+a)^(1/4),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b x^{4} + a\right )}^{\frac{1}{4}} x^{10}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^10/(b*x^4+a)^(1/4),x, algorithm="maxima")

[Out]

integrate(1/((b*x^4 + a)^(1/4)*x^10), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (b x^{4} + a\right )}^{\frac{3}{4}}}{b x^{14} + a x^{10}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^10/(b*x^4+a)^(1/4),x, algorithm="fricas")

[Out]

integral((b*x^4 + a)^(3/4)/(b*x^14 + a*x^10), x)

________________________________________________________________________________________

Sympy [C]  time = 1.70019, size = 44, normalized size = 0.34 \begin{align*} \frac{\Gamma \left (- \frac{9}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{9}{4}, \frac{1}{4} \\ - \frac{5}{4} \end{matrix}\middle |{\frac{b x^{4} e^{i \pi }}{a}} \right )}}{4 \sqrt [4]{a} x^{9} \Gamma \left (- \frac{5}{4}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**10/(b*x**4+a)**(1/4),x)

[Out]

gamma(-9/4)*hyper((-9/4, 1/4), (-5/4,), b*x**4*exp_polar(I*pi)/a)/(4*a**(1/4)*x**9*gamma(-5/4))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b x^{4} + a\right )}^{\frac{1}{4}} x^{10}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^10/(b*x^4+a)^(1/4),x, algorithm="giac")

[Out]

integrate(1/((b*x^4 + a)^(1/4)*x^10), x)